Package: QPress (via r-universe)

September 9, 2024

Type Package

Title Qualitative Network Analysis
Version 0.23

Date 2013-05-13

Description Qualitiative analysis of press perturbations of network
models. Given a network model represented as a signed directed
graphs, this package provide facilities for evaluating the
impact of a press perturbation to the system through
simulation.

Depends R(>=3.2.0)

Imports ggplot2, shiny, shinythemes, tcltk, tcltk2, XML
License GPL-2

LazyData TRUE

Encoding UTF-8

RoxygenNote 7.2.1

Collate 'QPress-package.R' 'Community.R' 'text.R' 'tk.r' ' XML.R'
'shiny.R'

Suggests DiagrammeR, knitr, rmarkdown

VignetteBuilder knitr

Repository https://scar.r-universe.dev

RemoteUrl https://github.com/swotherspoon/QPress
RemoteRef HEAD

RemoteSha 699306e24d588c1b8254ba876b95d5608de87dc2

Contents

QPress-package L
adjacency.qimageo o e e e
adjacency.matriX e e e e
adjointo e

2 QPress-package
checkbox L 6
checkedges e 6
community.sampler e e e e e e 7
dropnodes e 9
enforce.limitation 9
grviz.digraph . . . L. 10
impact.barplot 11
impact.barplot.shiny 12
impact.table L e e 13
interactive.selection L. e 13
model.dia 14
node.dabels 15
parse.edgeo e e e e 16
PIesS.MPAaCto e e e e e e 17
press.validate 18
radiogrid 19
read.digraph e 20
TELAINLETOUPS « & v v v v v e 21
SINUIM . . v v v v et e 22
slider . . . L e 22
stable.community L e e e e e e 23
system.simulate L 24
weight.density L L e 25
weight.density.shiny L 26

Index 28

QPress-package Qualitative Network Analysis

Description

Qualitiative analysis of press perturbations of network models. Given a network model represented
as a signed directed graphs, this package provide facilities for evaluating the impact of a press
perturbation to the system through simulation.

This package provides facilities for simulating press perturbation scenarios for qualitative network
models specified as signed directed graphs (signed digraphs).

Author(s)

Ben Raymond, Jessica Melbourne-Thomas, Simon Wotherspoon

B. Raymond, J. Melbourne-Thomas and S. Wotherspoon

adjacency.image

adjacency. image Adjacency Matrix Image

Description

Display adjacency matrix of the directed graph as an image

Usage

adjacency.image(edges, required.groups = c(@), cex.axis = 1)

Arguments

edges an edge list
required. groups
which edge groups should be included?

cex.axis character expansion factor for the edge labels

Details

Display the matrix constructed by adjacency.matrix as an image.

Value

Returns the adjacency matrix for the directed graph.

See Also

adjacency.matrix

Examples

edges <- parse.digraph(c(

"E x-> D",

"D x> C",

"c > E”,

"E x-> B",

"B *-> A",

"A -> E",

"D -> B"))
edges <- enforce.limitation(edges)
adjacency. image(edges)

4 adjacency.matrix

adjacency.matrix Adjacency Matrix

Description

Adjacency matrix of the directed graph.

Usage

adjacency.matrix(edges, labels = FALSE, required.groups = c(0))

Arguments
edges an edge list
labels add row and column labels

required. groups
which edge groups should be included?

Details

This function converts an edge list to an adjacency matrix A, following the convention that A[i, j]
represents the impact of node j on node i.

Value

Returns the adjacency matrix for the directed graph.

See Also

adjacency.image

Examples

edges <- parse.digraph(c(

"E x-> D",

"D *-> C",

"C ->E",

"E x-> B",

"B *-> A",

"A -> E",

"D -> B"))
edges <- enforce.limitation(edges)
adjacency.matrix(edges, labels=TRUE)

adjoint 5

adjoint Fedeew-Leverrier

Description

Adjoint matrix and Characteristic Polynomial

Usage

adjoint(A)

charpoly(A)

Arguments

A a square matrix

Details

These functions compute the adjoint matrix and characteristic polynomial of A by the Fedeew-
Leverrier algorithm.

If A has integer elements and the computations are performed with integer arithmetic the result is
exact.

Value

adjoint returns the adjoint matrix of A

charpoly returns the coefficients of the characteristic polynomial of A as a vector.

Examples

edges <- parse.digraph(c(

"E x-> D",

"D x-> C",

"C -> E",

"E x-> B",

"B x-> A",

"A -> E",

"D -> B"))
edges <- enforce.limitation(edges)
A <- adjacency.matrix(edges, labels=TRUE)
adjoint(A)

6 checkedges

checkbox Checkbox widgets

Description

Construct a checkbox widget

Usage

checkbox(parent, label, initial = 0)

checkcolumn(parent, label, rows, label.rows = TRUE)

Arguments
parent the parent window.
label the label for the enclosing frame.
initial the initial state of the checkbox
rows the row labels
label.rows whether to label rows.

Details

The checkbox function makes a single checkbox widget, while checkcolumn makes a widget con-
taining a column of checkboxes.

Value

Returns an object of class checkbox or checkcolumn with elements

window the widget
selected function that returns the state of the checkboxes
state the tclVars representing the state of the checkboxes
checkedges Edge Selection Widget
Description

Construct an edge selection widget

Usage

checkedges(parent, label, rows, edges, group = NULL, label.rows = TRUE)

community.sampler 7

Arguments
parent the parent window
label the label for the enclosing frame
rows the labels for the rows (node names)
edges an nx2 matrix that defines the edges
group a numeric vector that groups edges
label.rows whether to label rows

Details
Makes a widget consisting of a grid of check buttons that allow the user to select edges of the
network.

Value

Returns an object of class checkedges with elements

window the widget
selected function that returns the state of the check buttons
state the tclVars representing the state of the check buttons
community.sampler Sampling Community Matrices
Description

Construct functions to generate random community matrices

Usage

community.sampler(edges, required.groups = c(@))

Arguments

edges an edge list
required. groups

a vector of integers specifying which groups of edges must always occur in the
community matrix.

8 community.sampler

Details

Given an edge list that specifies a directed graph, this function constructs a list of functions that can
be use to generate random community matrices corresponding to that directed graph.

Edges in the edge list that do not fall in a required group are considered uncertain, and may or may
not be represented in the community matrix.

Random community matrices are generated in two stages, the first stage determines which of the
uncertain edges will be included or excluded in subsequent simulations, while the second stage
generates random matrices corresponding to the selected. The select function is a function of a
single argument p that determines which of the uncertain edge pairs will be included in matrices
generated by subsequent calls to community. This function always selects either neither or both
edges of a pair and every uncertain pair has likelihood p of being selected. The community function
is a function of no arguments that generates a random community matrix. The weights function is a
function of a single argument W that returns those entries of the community matrix W that correspond
to edges in the edge list.

Value

Returns a list with elements

community() a function to generate a random community matrix
select(p) a function that randomly selects which uncertain edges will be retained
weights(W) a function that returns the (non-zero) weights as a vector

edge.labels the labels of the edges
uncertain.labels
the labels of the uncertain edges

Examples

set.seed(32)
Sample model
edges <- parse.digraph(c(

"E %-> D",

"D x-> C",

"C -> E",

"E %> B”,

"B x-> A",

"A -> E",

"D --> B"))
edges <- enforce.limitation(edges)
s <- community.sampler(edges)
Force D --> B edge out
s$select(Q)
Generate community matrices
s$community ()
s$community()
Force D --> B edge in
s$select(1)
Generate community matrices
s$community()

drop.nodes 9

s$community ()

Select the uncertain D --> B edge with prob 0.6
s$select(0.6)

Generate community matrices

s$community()

s$community ()

drop.nodes Drop one or more nodes from a system

Description

This is an experimental function! Given a set of system simulation outputs (from system.simulate),
it will drop one or more nodes and their associated edges, but leave all other elements of the system
untouched. Each set of edge weights in sim is checked for stability after dropping the specified
nodes, and any matrices representing unstable systems are removed from the returned set.

Usage
drop.nodes(sim, to.drop, method = "remove")
Arguments
sim the result from system.simulate
to.drop the names of the nodes to drop (check node. labels(sim$edges))
method either "remove" (the specified nodes will be fully removed from the system) or
"zeros" (the specified nodes will be left in the system but all edges from or to
these nodes (other than self-interactions) are set to zero).
Value

As for system.simulate

enforce.limitation Self Limitation

Description

Enforce self limitation

Usage

enforce.limitation(edges)

Arguments

edges an edge list

10 grviz.digraph

Details

For stability, the majority of nodes of the directed graph should have a self limiting edge. This
function adds a self limiting edge for every node to an existing edge list.

Value

Returns an edge list augmented with self limiting edges.

grviz.digraph Export to DOT

Description

Write a DOT specification of the model.

Usage
grviz.digraph(
edges,
name = "web",

fontsize = 10,
node.style = "filled”,

node.shape = "oval”,
node.color = "DarkOrange",
edge.color = "DarkGrey”
)
Arguments
edges An edge list
name The name of the digraph
fontsize Fontsize for node labels.
node.style The node style.
node. shape The node shape.
node.color The node color.
edge.color The edge color.
Details

Write a DOT specification of the model in a form suitable for use with grviz from DiagrammeR.

Value

Returns a string.

impact.barplot 11

impact.barplot Impact Barplot

Description

Display the impact of a perturbation as a barplot

Usage

nn

impact.barplot(sim, epsilon = 1e-05, main = , cex.axis = 1)

impact.barplot@(
sim,
perturb = 0,
monitor = NA,
epsilon = 1e-05,

nn

main = ,
cex.axis =1
)
Arguments
sim the result from system.simulate
epsilon outomes below this in absolute magnitude are treated as zero.
main text for plot title
cex.axis character expansion factor for the edge labels
perturb a named vector that indicates which nodes were perturbed and the relative mag-
nitude of the perturbation.
monitor n named vector of signs (-1,0,1) or NA that indicates the outcome of the pertur-
bation.
Details

This control constructs a barplot that shows the fraction of simulations in which a positive (orange),
negative (blue) or zero (off white) outcome occurs at each node following a given perturbation.

The user may specify the perturbation of the nodes, and any outcome known from monitoring the
network, and then construct a barplot of the frequency table of outcomes at each node.

impact.barplot@ is a non-interactive variant for programmatic use.

12 impact.barplot.shiny

impact.barplot.shiny Shiny Impact Barplot

Description

A Shiny app to display the impact of a perturbation as a barplot

Usage
impact.barplot.shiny(sim, epsilon = 1e-05, main = "", cex.axis = 1)
Arguments
sim the result from system.simulate
epsilon outomes below this in absolute magnitude are treated as zero.
main text for plot title
cex.axis character expansion factor for the edge labels
Details

This control constructs a barplot that shows the fraction of simulations in which a positive (orange),
negative (blue) or zero (off white) outcome occurs at each node following a given perturbation.

The user may specify the perturbation of the nodes, and any outcome known from monitoring the
network, and then construct a barplot of the frequency table of outcomes at each node.

Examples

Not run:
set.seed(32)
Sample model
edges <- parse.digraph(c(
"E *-> D",
"D x-> C",
"C o> E",
"E *-> B",
"B x-> A",
"A > E",
"D --> B"))
edges <- enforce.limitation(edges)
sims <- system.simulate(10, edges)
impact.barplot.shiny(sims)

End(Not run)

impact.table 13

impact.table Impact Table

Description

Tabulate the impact of every positive perturbation as table.

Usage

impact.table(sim, epsilon = 1e-05)

Arguments

sim the result from system.simulate

epsilon outomes below this in absolute magnitude are treated as zero.
Details

Crosstabulate the mean impact (positive or negative) at each node for a positive perturbation of each
node. The k-th column corresponds to a perturbation of the k-th node, and shows the mean impact
on each node.

Value

The crosstabulation as a matrix

interactive.selection [Interactive Selection Widget

Description

Construct control widget

Usage
interactive.selection(
action,
nodes,
edges = NULL,

slider = NULL,
checkbox = NULL,
perturb = TRUE,
monitor = TRUE

14

model.dia

Arguments

action function to perform the widgets action

nodes node labels

edges edge labels

slider slider label

checkbox checkbox label

perturb should a node perturbation control be rendered

monitor should a node monitoring control be rendered
Details

Constructs a toplevel window that allows the allowing the user to interactively select nodes to per-
turb/monitor, from a subset of models, and then perform a given action.

The action argument must be function of five arguments

perturb the nodes that were perturbed
monitor the outcome of the monitoring
edge the edges to select

check the state of a checkbutton

slider the state of a slider

model.dia Dia Representations
Description
Read and write Dia representations of models
Usage

model.dia(file, labels = NULL)

write.dia(edges, file, width = 8, height = 2, self = TRUE)

Arguments
file name of the file to read or write
labels the sequence of labels to use for the nodes
edges an edge list
width width of the nodes in Dia
height height of the nodes in Dia
self should self edges be written.

node.labels 15

Details

These functions read and write Dia representions of model toplogies.

These functions should be used with care as no attempt is made to test for model mis-specification.
The model.dia function only recognizes node shapes "Flowchart - Ellipse", "Flowchart - Box"
and "Flowchart - Terminal", line types "Standard - Arc", "Standard - ZigZagline" and "Standard -
Line", and arrow types 8, 1 and 5. Other node shapes, line or arrow types will be silently ignored
leading to a mispecified model.

Value

The model. dia function returns an edge list.

See Also

read.digraph

node. labels Node and Edge Labels

Description

Extract labels for the nodes and edges of the directed graph.

Usage
node.labels(edges)

edge.labels(edges, reverse = FALSE)

Arguments

edges an edge list

reverse reverse the direction of edges
Details

These functions construct meaningful labels for the nodes and edges from an edge list.

Value

Return a vector of node or edge labels

16 parse.edge

parse.edge Indices of (Directed) Edges

Description

Parse a text representation of (directed) edges, return the index of the directed edge within the edge
list.

Usage

parse.edge(lines, edges)

Arguments
lines a vector of strings representing directed edges
edges an edge list

Details

Each directed edge is represented as a string consisting of two node labels separated by an arrow,
where the arrow consists of a sequence of dashes "-" followed by one of the character sequences
"SR <" The number of dashes used in the arrow is ignored.

Value

the indices of the directed edges within the edge list

Examples

Sample model
edges <- parse.digraph(c(
"E x-> D",
"D *-> C",
"C ->E",
"E x-> B",
"B *-> A",
"A > E",
"D --> B"))
edges <- enforce.limitation(edges)
parse.edge(c("E->D","D-*E","A-*B") , edges)

press.impact 17

press.impact Response to Press Perturbation

Description

Construct a function to calculate response to perturbation.

Usage

press.impact(edges, perturb, monitor = NULL)

Arguments
edges an edge list.
perturb a named vector that indicates which nodes were perturbed and the relative mag-
nitude of the perturbation.
monitor n named vector that indicates the subset of nodes to monitor.
Details

Given the an edge list that specifies a directed graph, a set of nodes to perturb and a set of nodes to
monitor, press. impact constructs a function of a single argument W that determines the response
of the monitored nodes to the perturbation for a simulated community matrix W.

Value

Returns a function that when applied to a community matrix calculates the response to a press
perturbation.

Examples

set.seed(32)
Sample model
edges <- parse.digraph(c(
"E x-> D",
"D x> C",
"C -> E",
"E x-> B",
"B x> A",
"A ->E",
"D --> B"))
edges <- enforce.limitation(edges)
s <- community.sampler(edges)
s$select(0.5)
Perturb D, monitor C
f <- press.impact(edges,perturb=c(D=1),monitor=c(C=0))
W <- s$community()
W

18

press.validate

W <- s$community()

(W

Perturb D, monitor all
f <- press.impact(edges,perturb=c(D=1))
W <- s$community()

(w

W <- s$community()

(W

press.validate

Validation Criterion

Description

Construct a function to test a validation criterion

Usage

press.validate(edges, perturb, monitor, epsilon = 1e-05)

Arguments

edges

perturb

monitor

epsilon

Details

an edge list

a named vector that indicates which nodes were perturbed and the relative mag-
nitude of the perturbation.

n named vector of signs (-1,0,1) that indicates the outcome of the perturbation.

outomes below this in absolute magnitude are treated as zero.

Given the an edge list that specifies a directed graph, a set of nodes to perturb and a set of nodes to
monitor, press.validate constructs a function of a single argument W to test whether the response
to perturbation of the system represented by the community matrix W matches an observed outcome.
The outcome is only specified up to sign (-1, O or +1), where outcomes smaller than epsilon are

treated as zero.

Value

Returns a function that when applied to a community matrix determines whether the matrix is
consistent with the given validation criterion.

radiogrid 19

Examples

set.seed(32)
Sample model
edges <- parse.digraph(c(

"E x-> D",

"D x> C",

"c > E”,

"E x-> B",

"B x> A",

"A -> E",

"D --> B"))
edges <- enforce.limitation(edges)
s <- community.sampler(edges)
s$select(0.5)
Perturb D, B and C must decrease
f <- press.validate(edges,perturb=c(D=1),monitor=c(B=-1,C=-1))
W <- s$community()
(W)
W <- s$community()
(W)

radiogrid Grid of Radio Buttons

Description

Construct a grid of radio buttons to select from a range of options that are common to many items.

Usage

radiogrid(parent, label, rows, choices, initial = 1, label.rows = TRUE)

Arguments
parent the parent window
label the label for the enclosing frame
rows the labels for the rows/items
choices the labels for the columns/choices
initial the initial selection
label.rows whether to label rows

Value

Returns an object of class radiogrid with elements

window the widget
selected function that returns the state of the radiobuttons
state the tclVars representing the state of the radiobuttons

20 read.digraph

read.digraph Text Representations of Models

Description

Read and write text representations of models

Usage
read.digraph(file, labels = NULL)

parse.digraph(lines, labels = NULL)

deparse.digraph(edges)

write.digraph(edges, file = "")

Arguments
file the name of the file to read or write
labels the sequence of labels to use for the nodes
lines a string representation of the model
edges an edge list.

Details

The functions read.digraph and parse.digraph read a model description from a text file and a
string respectively, while write.digraph writes a text representation of the model to and file.

These functions recognize the following text format. Each line corresponds to an edge, and must
consist of two node labels separated by an arrow. An arrow consists of one of the character se-
quences "<","*""<>" or "" on the left and ">","*","<>" or "" on the right, separated by a sequence

of dashes "-". The number of dashes used in the arrow defines the group number of the edge.

" nn

Value

The write.digraph function invisibly returns the text that was written to the file.

The functions read.digraph and parse.digraph return an edge list - a data frame with columns

From a factor indicating the origin of each edge (the node that effects)

To a factor indicating the destination of each edge (the node that is effected)
Group an integer vector that indicates the group each edge belongs to

Type a factor indicating the edge type - "N" (negative) ,"P" (positive),"U" (unknown)

or "Z" (zero)

Pair an integer vector that indicates the pairing of directed edges

Each edge of the text specification is separated into two directed edges, and every row of an edge
list corresponds to a single directed edge.

retain.groups 21

Examples

edges <- parse.digraph(c("A <-* B","C *-> A", "C <- D",
"D -> B" "B x—-% C","A <-—- D"))

edges

deparse.digraph(edges)

retain.groups Edge Subsets

Description

Subset an edge list

Usage

retain.groups(edges, groups)

retain.nodes(edges, nodes)

Arguments
edges an edge list
groups the groups to retain in the subset
nodes the nodes to retain in the subset
Details

These functions extract a subset of an edge list containing only edges in a specified group, or
incident with a specified set of nodes.

Value

retain. groups returns an edge list containing only edges from the specified groups.

retain.nodes returns an edge list containing only edges incident on the specified nodes.

Examples

edges <- parse.digraph(c("A *-> B","B *-> C","C *--> D"))
write.digraph(retain.groups(edges,c(@)))

22 slider

signum Sign classification

Description

Classify the sign of the elements of a vector

Usage

signum(x, epsilon = 1e-05)

Arguments
X vector of values to test
epsilon magnitude threshold
Details

Calculates the sign of the elements of then vector x, except that values less than epsilon in magnitude
are rounded down to zero.

Value

Returns a vector with elements +1,0 or -1.

Examples

signum(c(-40,-3,-0.1E-8,0,2,5))

slider Slider Widgets

Description

Construct a slider widget.

Usage

slider(parent, initial = 1, from = @, to = 100, orient = "horizontal”)
Arguments

parent the parent window

initial the initial values of the sliders

from minimum slider values

to maximum slider value

orient slider orientation

stable.community 23

Details

The slider function creates a widget containing a single horizontal slider.

Value

Returns an object of class slider with elements

window the widget
selected function that returns the state of the sliders
state the tclVars representing the state of the sliders
stable.community System Stability
Description

Test community matrix stability

Usage

stable.community (W)

Arguments

W a simulated community matrix

Details

The system is stable if the eigenvalues of community matrix all have negative real part. This
function tests the eigenvalues of a simulated community matrix to determine the stability of the
repreeented system.

Value

Returns TRUE if the system is stable, FALSE otherwise.

Examples

set.seed(32)
Sample model
edges <- parse.digraph(c(
"E *-> D",
"D x-> C",
"C -> E",
"E *-> B",
"B x-> A",
"A -> E",
"D --> B"))

24

system.simulate

edges <- enforce.limitation(edges)
s <- community.sampler(edges)
s$select (@)

First sample is stable

W <- s$community()
stable.community (W)

Second is not

W <- s$community()
stable.community (W)

system.simulate Simulate System

Description

Simulate Inverse Community Matrices for a Network

Usage

system.simulate(
n.sims,
edges,
required.groups = c(0),
sampler = community.sampler(edges, required.groups),
validators = NULL

Arguments

n.sims number of matrices to simulate.

edges an edge list.

required. groups
a vector of integers specifying which groups of edges must always occur in the
community matrix.

sampler the sampler object used to generate random weights (see community.sampler)

validators an (optional) list of validation functions generated by press.validate.

Details

Generate sets of edge weights and the inverse community matrices given a directed graph and
validation criteria by rejection sampling. Matrices with a pattern of signs consistent with the given
model are generated, and only the matrices that correspond to stable equilibria and consistent with
the given validation criteria are retained. For matrices retained in the sample, the matrix is inverted,
and the inverse community matrix, and the weights that define the community matrix are returned.
The function also returns the total number of matrices generated, the number of these that are stable
and the number that are ultimately accepted for the sample.

The output of this function may be passed to the interactive exploratory tools.

weight.density 25

This function is a simple wrapper for community.sampler, stable.community and the functions
generated by press.validate.

Value

Returns a list with elements

edges The edge list

A A list of inverse community matrices

w A matrix of the corresponding edge weights

total The total number of matrices generated

stable The number of stable matrices generated

accepted The number of matrices accepted for the sample
Examples

set.seed(32)
Sample model
edges <- parse.digraph(c(
"E x-> D",
"D x-> C",
"C ->E",
"E %x-> B",
"B x-> A",
"A -> E",
"D --> B"))
edges <- enforce.limitation(edges)
sims <- system.simulate(10,edges,
validators=list(
press.validate(edges,
perturb=c(D=1),
monitor=c(D=1)),
press.validate(edges,
perturb=c(D=1),
monitor=c(B=-1,C=1))))

weight.density Weight Density Plots

Description

Display weights of valid and invalid matrices as a density plots

26 weight.density.shiny

Usage

weight.density(sim, epsilon = 1e-05, main = "")

weight.density@(

sim,
perturb,
monitor,
edges,
smooth = 1,
epsilon = 1e-05,
main = ""
)
Arguments
sim the result from system.simulate
epsilon outomes below this in absolute magnitude are treated as zero.
main text for plot title
perturb a named vector that indicates which nodes were perturbed and the relative mag-
nitude of the perturbation.
monitor n named vector of signs (-1,0,1) or NA that indicates the outcome of the pertur-
bation.
edges logical vector indicating which edges to plot.
smooth double in the range [0,1] controlling the level of smoothing applied.
Details

This control constructs density plots that show the distribution of selected edge weights for the
cases that meet the selected validation criteria (blue), and those that do not (red), following a given
perturbation.

The slider controls the level of smoothing of the densities. Edges are labelled by pairs of integers

for compactness, where the integer codes correspond to the ordering of the node labels.

weight.density® is a non-interactive variant for programmatic use.

weight.density.shiny Shiny Weight Density Plots

Description

Shiny app to display weights of valid and invalid matrices as a density plots

Usage

weight.density.shiny(sim, epsilon = 1e-05, main = "")

weight.density.shiny 27

Arguments
sim the result from system.simulate
epsilon outomes below this in absolute magnitude are treated as zero.
main text for plot title

Details

This control constructs density plots that show the distribution of selected edge weights for the
cases that meet the selected validation criteria (blue), and those that do not (red), following a given
perturbation.

The slider controls the level of smoothing of the densities. Edges are labelled by pairs of integers
for compactness, where the integer codes correspond to the ordering of the node labels.

weight.density® is a non-interactive variant for programmatic use.

Index

adjacency.image, 3, 4 stable.community, 23
adjacency.matrix, 3,4 system.simulate, 24
adjoint, 5
weight.density, 25
charpoly (adjoint), 5 weight.density.shiny, 26
checkbox, 6 weight.density@ (weight.density), 25
checkcolumn (checkbox), 6 write.dia (model.dia), 14
checkedges, 6 write.digraph (read.digraph), 20

community.sampler, 7, 24

deparse.digraph (read.digraph), 20
drop.nodes, 9

edge.labels (node.labels), 15
enforce.limitation, 9

grviz.digraph, 10

impact.barplot, 11
impact.barplot.shiny, 12
impact.barplot® (impact.barplot), 11
impact.table, 13
interactive.selection, 13

model.dia, 14
node.labels, 15

parse.digraph (read.digraph), 20
parse.edge, 16

press.impact, 17
press.validate, 18

QPress-package, 2
radiogrid, 19
read.digraph, 15, 20

retain.groups, 21
retain.nodes (retain.groups), 21

signum, 22
slider, 22

28

	QPress-package
	adjacency.image
	adjacency.matrix
	adjoint
	checkbox
	checkedges
	community.sampler
	drop.nodes
	enforce.limitation
	grviz.digraph
	impact.barplot
	impact.barplot.shiny
	impact.table
	interactive.selection
	model.dia
	node.labels
	parse.edge
	press.impact
	press.validate
	radiogrid
	read.digraph
	retain.groups
	signum
	slider
	stable.community
	system.simulate
	weight.density
	weight.density.shiny
	Index

